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R E S U M E N
La visco-elasticidad es una propiedad que cuando es estudiada en fluidos newtonianos generalizados,

viene acompañada de propiedades como la memoria, o leyes de potencia para su modulo de relajación.
Es así que motivados por modelos de autosemejanza en analogía a la estructura molecular de la gelatina,
proponemos un modelo fraccional para su comportamiento dinámico y su respuesta a la variación de
frecuencia. Para ello se da un repaso teórico de los fundamentos necesarios para sostener la teoría. Los
resultados estimados de la prueba dinámica por el modelo fraccional son muy similares a los del modelo
ordinario. Se concluye con un análisis de las frecuenicas
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1. Introducción

La derivada fraccional tanto de Riemann-Liouville como de
Caputo han sido utilizadas para modelar empíricamente la re-
lación entre esfuerzo y deformación de fluidos viscoelásticos
lineales. Pero es sobretodo su habilidad de modelar fenómenos
hereditarios de memoria a largo plazo. Durante la primera mi-
tad del siglo XX se utilizó la derivada fraccional tanto explícita
como implicitamente, ya sea para modelar los leyes de poten-
cias temporales que describían a los tiempos de relajación o su
comportamiento hereditario Caputo en 1967 utilizó la derivada
que lleva su nombre para modelar la disipación en sismología y
metalurgía. Como veremos más adelante

2. Marco Teórico

2.1. Estructura interna de la gelatina

La gelatina está compuesta de colágeno, más específicamen-
te, colágeno gelatinizado.

El colágeno es una estructura común en los seres vivos, que
está compuesto principalmente por los aminoácidos glicina,
prolina y lisina, los cuales se reorganizan en cadenas, y se enro-
llan en una triple hélice.

Al gelatinizarse, la estructura de triple hélice se rompe, pro-
ceso al que se le denomina gelatinización, resultando en gelati-
na. Ésto comunmente se realiza con calor, o enzimas, por lo que
queda parcialmente hidrolizado, igualmente.

Cuando se disuelve en agua, se convierte en un sol, o una

Fig. 1. Estructura interna de la gelatina, mostrando como se
comportan las cadenas del colágeno en su estado de sol y su
estado de gel

dispersión coloidal fluida, pues las cadenas que lo componen se
suspenden en el agua sin ligarse permanentemente. Al volverse
a enfriar, algunas cadenas van a volverse a asociar, formando
zonas con la estructura de la triple hélice, aunque con una al-
ta hidratación, formando puentes de hidrógeno entre los grupos
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C O,y N H de las cadenas, y también con las molécu-
las de agua, y así se forma una red a lo largo de todo el volumen,
llegando a un estado de gel. La cantidad de agua que se queda
en las cadenas es lo que le da su elasticidad.

Éste arreglo es amorfo, siendo transparente solamente porque
las triples hélices suelen tener tamaños de 2−10nm, y no disper-
san luz. Igualmente, el índice de refracción del agua n ≈ 1,33

y el colágeno gelatinizado n ≈ 1,34 son muy similares, lo cual
igualmente contribuye a que no haya dispersión en dominios
internos.

2.2. Fluidos Newtonianos Generalizados

En un fluido ideal sin fuerzas aplicadas externas, el flujo de
densidad de momento esta dado por

Πij = ρvivj + pδij (1)

Π = ρvvT + p1 (2)

de tal modo que de la ecuación ∂iΠij recuperamos la ecuación
de balance de momento.

Para un fluido de Navier Stokes, se le es agregado un término
de viscosidad,

Πij = ρvivj + pδij + σij (3)

del que suponemos es lineal con las derivadas de la velocidad

σij = −η(∂jvi + ∂ivj) (4)

= −µ(∂jvi + ∂ivj) (5)

σ = −2µε̇ (6)

del último renglón tenemos la Ley de Viscosidad de Newton
que establece una proporcionalidad entre el tensor de esfuerzos
viscosos τ y el tensor de rapidez de deformación ε̇

τ12 = 2µε̇12 (7)

Una viscosidad aún más general es la de Reiner-Rivlin de la
forma

σ = g(I2, I3)ε̇+ h(I2, I3)ε̇
2 (8)

donde Ii son los invariantes principales del tensor de rapidez
de deformación. Esta forma de fluido generalizado necesaria-
mente para un fluido incompresible una traza nula, además de
que sus esfuerzos normales sean distintos σxy ̸= σyx invita a la
posibilidad de fluidos con memoria o reólogicos.

2.3. Elasticidad y Viscosidad

En 1678 Hooke dió su ley homónima de proporcionalidad de
esfuerzo y deformación, Üt tensio sic vis; el poder de cualquier
resorte esta en la misma proporción que su tensión". El esfuerzo
de relajación es proporcional a la deformación del material

ε(t) =
1

E
σ(t) (9)

=

∫ t

0

J(t− τ)dσ(τ) (10)

=

∫ t

0

1

E
dσ(τ). (11)

donde σ es el esfuerzo y ε la deformación, J(t) = 1
E

es el
modulo de fluencia.

El modelo de Newton de viscosidad nos dice que

σ(t) = µε̇(t) (12)

=

∫ t

0

G(t− τ)dε(τ) (13)

= ε(0+)G(t) +

∫ t

0

G(t− τ)ε̇(τ)dτ (14)

= µϵ(0+)δ(t) +

∫ t

0

δ(t− τ)ε̇(τ)dτ (15)

= µϵ(0+)δ(t) + µε̇(t) (16)

La consideración de respuesta instantánea del fluido a cambios
en la taza de deformación es incorrecta para líquidos de alto
peso molecular, como los polímeros, en los que su respuesta al
esfuerzo es similar a la de un sólido elástico.

Es por ello que se les es llamado como fluidos visco-elásticos.
Pueden ser modelados bajo la consideración de combinaciones
de resortes lineales elásticos y amortiguadores lineales.

El Modelo de Maxwell es un resorte y un amortiguador en-
samblados en serie. El esfuerzo aplicado es el mismo para cada
elemento, y la deformación es aditiva. Si una deformación es
aplicada al modelo, el esfuerzo incrementa al máximo para lue-
go relajarse a cero. De ser aplicado una deformación constante,
el esfuerzo incrementa a un máximo para luego relajarse expo-
nencialmente.

σ = σ1 = σ2 (17)

ε = ε1 + ε2 (18)

ε̇ = ε̇1 + ε̇2 (19)

= µσ +
1

E
σ̇ (20)

=⇒ σ(t) =

∫ t

0

µ

τσ
e
− t−τ

τσ ε̇(τ)dτ (21)

con τσ = 1
µE

L{ξ̂} = Sξ̂(s) = µsσ̂ +
1

E
Sσ̂(s) (22)

σ(t) =

∫ t

0

G(t− τ)ξ̇dτ = G ∗ ξ̇ (23)

L{σ} = σ̂ = Gsξ̂ (24)

Sξ̂ =

(
µs+

1

E
S

)
σ̂ (25)

σ̂ =
Sξ̂

µs+ 1
E
S

=
1

µ+ 1
E
s
ξ̂ (26)

Ĝ =
σ̂

sξ̂
=

1

µs+ 1
E
s2

=
1

s(µ+ 1
E
s)

(27)

=
E

µEs+ s2
=

E

s(µE + s)
(28)
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G(t) = Ee−µEt (29)

El Modelo de Kelvin consiste en un resorte y un amortiguador
en paralelo. La deformación es la misma para cada elemento y
el esfuerzo aplicado es aditivo.

ε = ε1 = ε2 (30)

σ = σ1 + σ2 (31)

σ = Eε+ µε̇ (32)

=⇒ ε(t) =

∫ t

0

1

E
(1− e

− t−τ
τε )σ̇(τ)dτ (33)

σ = Eϵ+ µϵ̇ (34)

σ̂ = Eϵ̂+ µsϵ̂ (35)

ϵ(t) =

∫ t

0

J(t− τ)σ̇(τ)dτ = J ∗ σ̇ (36)

ϵ̂ = Ĵsσ̂ (37)

Ĵ =
ϵ̂

sσ̂
(38)

ϵ̂

σ̂
=

1

E + µs
(39)

ϵ̂

sσ̂
=

1

Es+ µs2
(40)

Ĵ =
1

Es+ µs2
=

1

s(E + µs)
(41)

Ĵ =
1

Es
− 1

E

(
1

E
µ
+ s

)
(42)

J(t) =
1

E

(
1− e

−E
µ
t
)

(43)

con τε = µ
E

2.4. Escalera Fractal

Retomemos la definición del esfuerzo en términos del modu-
lo de relajación

σ(t) =

∫ t

0

G(t− τ)ε̇(τ)dτ (44)

= G ∗ ε̇ (45)

entonces podemos hacer la transformada de Laplace y aplicar el
teorema de convolución al igual que en los modelos pasados

σ̂(s) = Ĝ(s)sε̂(s) (46)

Introducimos un modelo análogo al visto en clase y que puede
consultarse en Kelly y McGough, 2009, proponiendo la com-
ponente equivalente a la totalidad de la red infinita de tal modo
que

σ̂ = Leq ϵ̂ =⇒ Ĝ =
Leq

s
(47)

Leq = L1 +
1

L2 +
1

Leq

(48)

Leq = L1 +
L2 · Leq

L2 + Leq
(49)

Leq(L2 + Leq) = L1(L2 + Leq) + L2Leq (50)

Resolviendo para Leqtenemos

Leq = −µs

2
± 1

2

√
(µs)2 − 4µsE ∼

√
µEs (51)

Ĝ =

√
µE

s
(52)

L−1{G} =

√
µE

Γ
(
1− 1

2

)L−1

{
Γ
(
1− 1

2

)
s1−

1
2

}
(53)

G(t) =

√
µE

Γ
(
1− 1

2

) t1/2 (54)

al sustituirlo en la expresión (??) tenemos que

σ(t) =

∫ t

0

√
µE

Γ
(
1− 1

2

) (t− τ)1/2ε̇(τ)dτ (55)

=
√

µEC∂
1/2
t ε(t) (56)

2.5. Reo-metro de torsión

En el arreglo experimental presentado en la siguiente sección
se trabaja con un péndulo de torsión visco-elástico. Pensando a
la deformación como ε = Rθ y a la torca como τ ∝ σ, en un
modelo de Kelvin-Voigt, tenemos lo siguiente

τ = −κθ − β
dθ

dt
(57)

que de acuerdo con la segunda ley de newton del momento an-
gular se tiene la siguiente ecuación

d2θ

dt2
+

β

I

dθ

dt
+

κ

I
θ = 0, (58)

asumiendo como condición inicial que parte del reposo θ̇(0) =

0 en una posición θ0, podemos llegar a la siguiente solución

θ(t) = θ0e
− β

2I
t cos(ωt) (59)

donde ω =
√

κ
I
− ( β

2I
)2. Precisamente se cumple la siguiente

relación Asp et al., 2022

τ(t) =
πR3

2
σ(t) (60)

ε(t) =
Rθ(t)

h
(61)

=⇒ τ(t) = −πER4

2h
θ(t)− πµR4

2h
θ̇(t) (62)

es decir κ = πER4

2h
y β = πµR4

2h
. Suponiendo una relación fun-

cional entre la deformación y el esfuerzo como en (55), tenemos
una torca distinta

σ(t) = (µE)α∂α
t ϵ(t) (63)

podemos reescalar para obtener la torca y el ángulo.

τ(t) =
πR4

2h
(µE)α∂α

t θ(t) (64)
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cuya ecuación de Newton es de la siguiente forma

d2θ

dt2
+

γ

I
∂α
t θ = 0 (65)

donde γ = πR4

2h
(µE)α que tiene como solución

θ(t) = θ0E2−α(−
γ

I
t2−α) (66)

τ(t) = γθ0t
2−αE2−α(−

γ

I
t2−α) (67)

Así mismo es posible plantear otra ecuación dinámica frac-
cional que incluya en el segundo orden una α también

∂2αθ +
µ

I
∂αθ = 0 (68)

de solución

θ(t) = θ0Eα(−
µ

I
tα) (69)

τ(t) = θ0t
−αEα,1−α(−

µ

I
tα) (70)

3. Materiales y método

3.1. Materiales

Sensor de rotación
Amplificador de señales
Generador de funciones
Osciloscopio
Dos polarizadores
Porta lentes
Motor con caja reductora (3kgm de torca)
Microcontrolador
Laptop con lectura serial
Gelatina cristalina
Bases, postes y soportes
Cámara de teléfono
Fuente de luz monocromatica
Lente con distancia focal de 15 mm
Difuminador de luz
Un diagrama esquemático del arreglo experimental se mues-

tra en la figura 2.

3.2. Método

Se preparó gelatina disolviendo un sobre de grenetina crista-
lina en agua caliente, con una razón de 1:8 y otra de 1:5. Poste-
riormente se dejó enfriar en el refrigerador, y se sacó para que
llegase a temperatura ambiente.

Se montó una fuente de luz blanca LED, seguido de una len-
te biconvexa de manera que el LED estuviera en su punto focal.
Delante de la lente se puso un filtro de polarización lineal. De-
jando suficiente distancia para colocar el reómetro, se puso otro
filtro de polarización lineal, cuidando que su eje de transmi-
sión fuera perpendicular al primero (que no dejase pasar nada
de luz).

Finalmente, se coloca el reómetro en medio del arreglo.
Para tomar la muestra de fotoelasticidad, se utilizó un cubo de

Fig. 2. Foto del arreglo experimental.

gelatina. Se alínea en el reómetro de manera que el haz pasara
por el centro del cubo. Se cerró el reómetro, cuidando de que
solamente hiciera contacto con la gelatina, sin deformarla, y se
le dió un ángulo inicial al disco, desde donde se dejó oscilar
hasta que se amortiguara por completo.

Para la muestra de respuesta a frecuencias, se utilizó un ci-
lindro de gelatina, ajustando el reómetro de igual manera que
antes. Se hizo oscilar el motor a un voltaje sinusoidal, proce-
dente de un generador de señales amplificado. La frecuencia se
midió con un osciloscopio conectado al motor. Se fue varian-
do la frecuencia, en incrementos convenientes, llegando a una
frecuencia dada, y dejando al sistema oscilar por un momento
antes de pasar a la siguiente.

4. Resultados

Para la muestra de respuesta a frecuencias, se obtuvo el movi-
miento de la figura 3, en donde podemos ver la variación escalo-
nada de la frecuencia de entrada, y la amplitud del movimiento
que genera.

Más aún, a partir de ésto, podemos ver que el la respuesta
del sistema ante un impulso sería como en la figura 4, donde se
ve que de ∼ 8 − 10Hz hay una resonancia muy marcada en el
sistema. Ésto igual se puede apreciar en la figura 3, durante el
tiempo en donde se ensancha la gráfica inferior.

La incertidumbre experimental del sensor de movimiento an-
gular es de 0,5grad. Para propagar el error se tomo la desvia-
ción estándar de la observación en cierta ventana de tiempo. Se
realizó un ajuste de mínimos cuadrados guiados con primeras
suposiciones de los parámetros con base en regresiones logarít-
micas y análisis de Fourier.

5. Discusión

Posterior al análisis de fotoelasticidad, con los parámetros
obtenidos, se simuló la respuesta a un impulso de nuestro siste-
ma de acuerdo a la función de transferencia de nuestro modelo,
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Fig. 3. Gráfica de los datos obtenidos en la toma de la muestra
de respuesta a frecuencias, en la parte superior se encuentra el
espectrograma de las oscilaciones, y en la parte inferior el mo-
vimiento de la muestra.

Fig. 4. Gráfica de la respuesta ante un impulso del sistema
(diagrama de Bode) de acuerdo a los datos obtenidos en el ex-
perimento.

obteniendo la figura 6, que como podemos ver, difiere significa-
tivamente de lo

Existe una gran diferencia en el esfuerzo de respuesta ante
la deformación entre ambos modelos, ya que el esfuerzo inicial
del clásico es acotado, mientras que en el caso fraccional se in-

0.0 0.5 1.0 1.5
t (s)

−1

0

1

2

θ
(r
a
d
)

1e1
Deformación observada

θ(t) = θ0e
− β

2I
t
cos(ωt)

θ(t) = θ0E2−α(−µ
I
t2−α)

Fig. 5. Gráfica de ajustes tanto del modelo clásico como el
fraccional, los cuales se sobrelapan. Además se muestran las
observaciones con su error propagado.

Tabla 1. Parámetros estimados con sus incertidumbres en juego
de mediciones presentado.

Parámetro Modelo ordinario Modelo fraccional

θ0 [rad] 22,9(7) 21,40
β
2I

[Hz], γ
I

[m3−4αN2αsα]
3,2(1) 501(11)

ω [Hz], α 27,8(1) 0,13

determina. Esto puede indicar como se menciono anteriormente
que al ser un fluido newtoniano generalizado su respuesta ante
la deformación no es instantanea.

6. Conclusiones

El trabajo presenta un ejercicio de modelaje fraccional apo-
yado en tópicos vistos a lo largo del curso como lo son el osci-
lador armónico fraccional y el análisis de redes autosemejantes.
Sin embargo no podemos asegurar con certeza que el modelo
propuesto presente alguna ventaja encima de los ya existentes.
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