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R E S U M E N
La difracción de Fraunhofer ocurre cuando la luz que incide sobre el medio que funge como obstáculo y
sobre áquel que actúa como pantalla lo hace a manera de ondas planas. En este caso, el patrón proyecta-
do sobre este último se encuentra en función de la distancia entre la pantalla y el obstáculo. En el caso
de difracción por una ranura circular, puede encontrarse, mediante el principio de Huygens-Fresnel una
expresión para la longitud de onda de la luz monocromática utilizada a partir de conocer la separación
entre los máximos (o mínimos) de intensidad observados en el patrón, el radio de la abertura y la separa-
ción entre esta y la pantalla. La validez de dicha ecuación busca verificarse a partir del estudio del patrón
obtenido a partir de la incidencia de luz láser sobre una rejilla circular y su posterior incidencia sobre una
pantalla. Las distancias entre máximos fueron obtenidas mediante un programa de edición de imágenes.
Se encuentra que la longitud de onda sugerida por la ecuación mencionada difiere de la longitud de onda
real señalada en el láser con solo un 3 % de error porcentual, y se observa una alta significancia estadística
entre los datos obtenidos.
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1. Introducción

El término difracción proviene del latín diffractum, que a su
vez se relaciona con el verbo diffringere, cuya traducción más
directa es quebrar o romper en pedazos. El nombre de este fenó-
meno fue acuñado por el físico y matemático italiano Francesco
María Grimaldi, quien realizó investigaciones sobre diversos fe-
nómenos ópticos durante la segunda mitad del siglo XVII. En
uno de sus experimentos, Grimaldi dejó pasar luz solar a un
cuarto oscuro a través de un pequeño orificio sobre una de sus
paredes, y observó que la luz sobre la pared opuesta formaba
una mancha de mayor diámetro que el esperado por sus cálcu-
los geométricos, rodeada„además, de bandas coloreadas. Los
resultados de colocar un delgado hilo en la trayectoria de la luz
mostraron el mismo comportamiento. Grimaldi fue así la pri-
mera persona en observar experimentalmente el fenómeno de
difracción, que trató en su obra Physicomathesis de lumine, co-
loribus et iride (1665) como un “cuarto modo de propagación
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de la luz”, además de la propagación directa, la refracción y la
reflexión (Bravo y Pesa, 2015).

Fue en 1801 cuando Thomas Young, médico y físico inglés,
formuló una explicación dentro de la teoría ondulatoria de la luz
para el fenómeno de difracción mediante un nuevo concepto: la
interferencia. Young propuso que las orillas de un obstáculo re-
flejan la luz de vuelta al espacio, haciendo que esta y la onda
geométricamente transmitida interactúen de tal forma que pro-
ducen el fenómeno de difracción (Kumar y Ranganath, 1991).
La división de la luz en dos partes al atravesar un obstáculo ya
había sido planteada antes por Newton, en su teoría corpuscu-
lar, mediante la cual intentó explicar el fenómeno de difracción.
En este caso, una de las partes corresponde a los corpúsculos de
luz que se mueven sin perturbación en sus trayectorias rectas,
mientras que la segunda corresponde a los corpúsculos desvia-
dos de sus trayectorias al moverse por la vecindad inmediata al
borde de un obstáculo (Rubinowicz, 1957).

El principio de Huygens considera que cada punto en el frente
de onda puede ser considerado como una fuente secundaria de
ondas esféricas (Lefèvre, 1993).

El efecto de la difracción es dependiente de la longitud de
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onda, aumentándose en aquellas ondas corridas al rojo, es decir,
aquellas de mayor longitud de onda (Hecht, 2017). Sin embar-
go, el principio de Huygens es independiente de la longitud de
onda, ya que predice el mismo frente de onda para las mismas
configuraciones de frente de onda. La inconsistencia de la apli-
cación teórica del principio de Huygens con las observaciones
fue resuelta por Fresnel, quien también consideró la interferen-
cia.

El principio de Huygens - Fresnel establece que todo pun-
to sin obstrucción de una frente de onda, en un instante dado,
sirve como una fuente de ondículas secundarias esféricas (de
la misma frecuencia de aquella onda primaria). La amplitud de
campo óptico a cualquier punto más allá del frente de onda es
la superposición de todas estas ondículas.

Gustav Kirchoff precisó este principio, deduciéndolo de la
ecuación de onda de la teoría electrodinámica de Maxwell, re-
quiriendo que su amplitud y su derivada deban ser conocidas en
superficies adyacentes (Griffiths, 2017). Lo anterior es una con-
secuencia del hecho de que la ecuación de onda en óptica es de
segundo orden en el tiempo, mientras que la mecánico-cuántica
(la ecuación de Schrödinger) es de primer orden; por lo tanto, el
principio de Huygens es correcto para ondas de materia, donde
la acción reemplaza al tiempo (Feynman, 1948). En 1924, Eps-
tein y Ehrenfest fueron los primeros en estudiar la difracción de
la luz con la teoría cuántica, específicamente con el principio de
correspondencia; obtuvieron resultados idénticos al de la óptica
clásica (Epstein y Ehrenfest, 1924).

La difracción ocurre cuando una onda electromagnética in-
teractúa con alguna obstrucción física. Bajo el mismo marco
teórico, esta obstrucción está definida como un metal continuo
no absorbente y sin ningún calentamiento de Joule, y por lo tan-
to deberá ser de conductividad infinita. Consideremos un par de
pantallas paralelas opalescentes Σ y σ, transversales a la fuente
de emisión de luz. La primera pantalla cuenta con un orificio a
través del cual puede pasar un láser, y la segunda se toma co-
mo el lugar en el que se proyecta la imagen resultante. Se dice
que la difracción es de Fraunhofer cuando el patrón de difrac-
ción por Σ proyectado en σ está en función de la distancia entre
ambas pantallas. Para asegurarnos de que sea así:

R >
b2

λ
(1)

donde R es la distancia, b el radio efectivo de la abertura circular
y λ la longitud de onda de la luz utilizada.

Consideremos una rendija circular de diámetro a, con a muy
pequeño, iluminada por una onda plana monocromática de lon-
gitud de onda λ. La luz se difracta y se observa un patrón de
difracción en una pantalla lejana.

Deducción a partir del Principio de Huygens-Fresnel

Cada punto de la rendija actúa como una fuente secundaria
de ondas esféricas. La amplitud resultante en un punto P en la
pantalla se obtiene sumando todas las contribuciones de estos
elementos, considerando la diferencia de fase entre ellas.

Primero consideramos la diferencia de camino óptico entre
dos puntos separados una distancia y en la rendija, que es:

∆s = y sin(θ) (2)

luego, la fase relativa entre dos elementos de la rendija separa-
dos una distancia y es:

dϕ =
2π

λ
∆s =

2π

λ
y sin θ (3)

y la amplitud total es la suma de las contribuciones de todos los
puntos de la rendija:

E(θ) =

∫ a/2

−a/2

E0e
i(2π/λ)y sin(θ) dy (4)

evaluando esta integral se obtiene:

E(θ) = E0a
sin(β)

β
, (5)

donde β = πa
λ

sin(θ).
Ahora, la intensidad está dada por el cuadrado del módulo de

la amplitud:

I(θ) = I0

(
sinβ

β

)2

(6)

donde I0 es la intensidad máxima en θ = 0.

Condiciones para los Mínimos y Máximos

Los mínimos ocurren cuando:

β = mπ, m = ±1,±2, . . . (7)

Lo que lleva a la ecuación de los mínimos:

a sin(θ) = mλ (8)

En términos de la posición y en la pantalla (a distancia L),

ym =
mλL

a
(9)

ecuación que se obtiene de forma aproximada (Hecht, 1975).
Los máximos secundarios ocurren entre los mínimos, pero con
menor intensidad. Obtenemos la diferencia entre máximos ∆y:

∆y = ym+1 − ym

=
(m+ 1)λL

a
− mλL

a

=
λL

a

(10)

y, rearreglando (10) para λ, obtenemos:

λ =
a

L
∆y (11)

El objetivo de la presente práctica es verificar la viabilidad de
la aproximación (11), utilizando fuentes de luz monocromáticas
con longitud de onda conocida y contrastando esta longitud de
onda con aquella estimada por (11) al utilizar parámetros medi-
dos empíricamente.
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2. Materiales y método

2.1. Materiales

Láser rojo de 650 nm± 10 nm de longitud de onda.
Mesa óptica con accesorios: Postes y soportes.
Regla graduada en milímetros.
Cámara (teléfono celular).
Hoja milimétrica.
En la figura 2 encontramos un diagrama esquemático del

arreglo experimental.

Fig. 1. Diagrama de arreglo experimental

2.2. Método

Se ajustaron los soportes de instrumentos ópticos a los postes,
mismos que se ajustaron a las bases, mismas que se ajustaron a
la mesa óptica. En uno de los soportes se colocó una fuente de
luz láser cuya longitud de onda era de 650 nm ± 10 nm. En
el otro soporte, directamente en frente de aquel en el que se
ajustó el láser, se fijó un colimador de láser que fungía como
apertura circular. Frente a este arreglo, sobre una pared que se
encontraba a una distancia de 3,835m ± 0,005m de la mesa
óptica, se colocó una hoja de papel milimétrico.

Se encendió el láser y se ajustó manualmente para que su haz
incidiera a través de la apertura circular y se observó un patrón
de interferencia sobre la hoja milimétrica. Utilizando una cá-
mara y sin dejar de incidir el láser, se colocó una regla para el
escalamiento de la foto tomada. Se apagó el láser y las distan-
cias entre los anillos más brillantes se midieron en un programa
de edición de imágenes.

Se analizarón los datos tomando la intensidad normalizada de
luz de cada píxel, se seleccionó una región arbitraria transversal
al medio, y se localizaron los máximos y mínimos de las inten-
sidades, después se escalaron los píxeles a metros, para hallar
su relación lineal y con ello una estimación de longitud de onda
del láser.

3. Resultados
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Fig. 2. Máximos y mínimos hallados de la intensidad norma-
lizada de una región arbitraria de la foto tomada del patrón de
difracción

Se aplicó un modelo de regresión lineal utilizando una rees-
critura de la ecuación (9) tal que:

ym = λ

(
Lm

d

)
(12)

esta, por supuesto, es una ecuación lineal con λ como pendiente
y Lm

d
como variable independiente.

Los resultados de esta regresión lineal, así como sus estadís-
ticos asociados (p-valor, R2), se encuentran en la tabla 1. Las
gráficas de los máximos y los mínimo hallados se encuentran
en la figura 2.

Tabla 1. Resultados de la regresión

Variable dependiente:

Distancia del centro [m]

Coeficiente 669,6× 10−9∗∗∗

(5)

R2 0.99

Observaciones 12

Nota:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Tabla 2. Exactitud de los resultados

Reportado en el láser [nm] Medido [nm] Error porcentual

650,0± 10 669.6 ±5 3%
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4. Discusión

Los valores obtenidos para la separación entre máximos (o
mínimos) de intensidad como resultado de la regresión lineal
presenta un alto grado de significancia estadística entre las se-
paraciones medidas directamente, de las fotos escaladas, al cen-
tro de las mismas. Es altamente improbable, según indican los
p-valores reportados, que se obtuvieran esos datos dado que no
exista relación entre las variables del modelo de regresión li-
neal, esto es, que el efecto observado a partir de los datos no
tenga validez alguna. Asimismo, el alto valor de R2 reportado
para todos los ensayos indica que los valores de (m, ym) medi-
dos se encuentran cercanos a la línea de regresión obtenida. Este
estadístico indica que la variación en la variable independiente
ym puede ser explicada de manera satisfactoria por la variación
en la variable independiente. Puede considerarse entonces que
los valor obtenidos para λL/d son representativos de los datos
y pueden utilizarse entonces con un alto grado de confianza para
el cálculo directo de las longitudes de onda.

5. Conclusiones

A buena precisión y exactitud con los datos conocidos, se ob-
tuvieron las longitudes de onda de los haces incidentes a través
de nuestros modelos de regresión lineal. El bajo p-valor asocia-
do a los modelos lineales nos sugiere que existe una gran signifi-
cancia estadística entre los datos, de forma que puede afirmarse
el cumplimiento aproximado de la relación de proporcionalidad
entre la separación entre máximos y el número de máximos que
se observan. Esto es:

ym ∝ m (13)

relación contenida en la ecuación (9), que asimismo es una con-
secuencia del fenómeno de difracción, por lo que se verifica este
fenómeno.
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